Приложение 3 к ОПОП СПО по специальности 15.02.09 Аддитивные технологии

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.05 ТЕПЛОТЕХНИКА

Рабочая программа учебной дисциплины «ОП.05 Теплотехника» разработана в соответствии с требованиями ФГОС СПО по специальности 15.02.09 «Аддитивные технологии» утвержденного приказом министерства образования и науки РФ от 22 декабря 2015 г. № 1506

Организация-разработчик: ГАПОУ СО «Саратовский колледж промышленных технологий и автомобильного сервиса»

Разработчик: Цыбина Т.В., преподаватель ГАПОУ СО «СКПТиАС»

Рецензент:

Внутренний: Крупенина С.Ю., преподаватель спец. дисциплин ГАПОУ СО «СКПТиАС»

Внешний: Бакутин П.М., преподаватель ППК СГТУ имени Гагарина Ю.А.

СОДЕРЖАНИЕ

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА ДИСЦИПЛИНЫ	5
3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	10
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ УСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	11

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.05 ТЕПЛОТЕХНИКА

1.1. Область применения программы

Рабочая программа учебной дисциплины «ОП.05 Теплотехника» является частью программы подготовки специалистов среднего звена в соответствии с $\Phi\Gamma$ ОС по специальности СПО 15.02.09 «Аддитивные технологии».

1.2 Место дисциплины в структуре ОПОП: учебная дисциплина «ОП.05 Теплотехника» входит в общепрофессиональный цикл образовательной программы.

1.3. Цель и требования к результатам освоения учебной дисциплины:

Изучение дисциплины направлено на формирование **общих и профессиональных компетенций**, включающих в себя способность:

- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- OK 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
 - ОК 9. Ориентироваться в условиях смены технологий в профессиональной деятельности.
- ПК 2.1. Организовывать и вести технологический процесс на установках для аддитивного производства
- ПК 2.2. Контролировать правильность функционирования установки, регулировать её элементы, корректировать программируемые параметры
- ПК 2.3. Проводить доводку и финишную обработку изделий, созданных на установках для аддитивного производства
- ПК 2.4. Подбирать параметры аддитивного технологического процесса и разрабатывать оптимальные режимы производства изделий на основе технического задания (компьютерной/цифровой модели).

В результате освоения учебной дисциплины обучающиеся должны **уметь:**

- рассчитывать теплообменные процессы;
- производить расчеты нагрева и теплообмена в камерах построения установок для аддитивного производства

знать:

- основные законы теплообмена и термодинамики;
- методы получения, преобразования и использования тепловой энергии;
- способы переноса теплоты, устройство и принципы действия теплообменных аппаратов, силовых установок и других теплотехнических устройств;
 - тепловые процессы, происходящие в аппаратах и машинах;
- устройство и принцип действия камер построения установок для аддитивного производства;
- закономерности процессов теплообмена камер построения установок для аддитивного производства.

1.4. Количество часов на освоение программы учебной дисциплины:

Максимальная учебная нагрузка обучающегося 50 часа, в том числе: обязательная аудиторная учебная нагрузка обучающегося 48 часа; самостоятельная работа обучающегося 2 часа.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка	50
Обязательная аудиторная учебная нагрузка	48
в том числе:	
лекции, уроки	36
практические занятия	12
лабораторные занятия	-
Самостоятельная работа	2
Промежуточная аттестация в форме дифференцированного зачёта	2

2.2. Тематический план и содержание учебной дисциплины

Наименование разделов и тем	Содержание учебного материала, практические занятия, самостоятельная работа обучающихся	Объем часов	Уровень освоения	Коды компетенций, формированию которых способствует элемент программы
1	2	3	4	5
Введение	История развития науки «Теплотехника». Прикладное назначение науки. Теплоиспользующее оборудование и его применение в промышленности.	2	1	OK 02 OK 05; OK 08 OK 09; ПК 2.1 - ПК 2.4
	ехнической термодинамики			
Тема 1.1. Основные сведения	Термодинамическая система и термодинамический процесс. Параметры состояния. Идеальный газ и законы идеального газа, понятия о смесях. Смеси идеальных газов. Внутренняя энергия. Теплота и работа. Удельная теплоемкость	2	1	OK 02 OK 05; OK 08 OK 09; ПК 2.1 - ПК 2.4
Тема1.2. Первый	Закон сохранения и превращения энергии.	2		OK 02 OK 05;
закон термодинамики	Первый закон термодинамики. Энтальпия.	2	1	OK 02 OK 03, OK 08 OK 09; ПК 2.1 - ПК 2.4
Тема 1.3. Основные термодинамические процессы и параметры состояния	Термодинамические процессы и параметры состояния. Изохорный процесс. Изобарный процесс. Изотермический процесс. Адиабатный процесс. Политропный процесс.	2	1	OK 02 OK 05; OK 08 OK 09; ПК 2.1 - ПК 2.4
Тема 1.4. Термодинамическ ие процессы водяного пара.	Термодинамический процесс получения водяного пара. Термодинамические процессы водяного пара	2	1	OK 02 OK 05; OK 08 OK 09; ПК 2.1 - ПК 2.4
Тема 1.5. Второй закон термодинамики	Обратимые и необратимые процессы. Круговые термодинамические процессы тепловых двигателей. Круговые термодинамические процессы холодильных установок. Формулировка второго закона термодинамики. Обратимый цикл Карно. Понятие энтропии	2	1	OK 02 OK 05; OK 08 OK 09; ПК 2.1 - ПК 2.4

1	2	3	4	5
Гема 1.6.	Циклы поршневых двигателей внутреннего сгорания. (Циклы Отто, Дизеля,	2		ОК 02 ОК 05;
'ермодинамика	Тринклера). Циклы газотурбинных установок. Циклы реактивных двигателей.			ОК 08 ОК 09;
азовых	Цикл магнитогидродинамического генератора			ПК 2.1 - ПК 2.4
еплосиловых	Тематика практических занятий:	2		
становок.	Расчет КПД поршневых двигателей внутреннего сгорания		2	
Гема 1.7.	Паровые теплосиловые установки с циклом Карно. Паровые теплосиловые	2		OK 02 OK 05;
ермодинамика	установки с циклом Ренкина. Паровые теплофикационные установки. Атомные	<i>2</i>	1	OK 02. OK 09;
аровых	теплосиловые установки		1	ПК 2.1 - ПК 2.4
аровых еплосиловых	Тематика практических занятий:	2		11K 2.1 11K 2.4
становок	Расчет КПД паровых теплосиловых установок.	<i>2</i>	2	
Гема 1.8.	Общие понятия и определения, цикл воздушной холодильной	2		OK 02 OK 05;
гема 1.6. Гермодинамика	установки. Цикл парокомпрессионной холодильной установки. Цикл	2		OK 02 OK 03; OK 08 OK 09;
ермодинамика Олодильных	пароэжекторной холодильной установки.		1	ПК 2.1 - ПК 2.4
становок	пароэжекторной холодильной установки.			11K 2.1 - 11K 2.4
Гема 1.9.	Первый закон термодинамики для потока. Сжатие газа в компрессоре.	2		OK 02 OK 05;
ермодинамика	Уравнение адиабатного течения. Истечение газов из сопел.	2		OK 02 OK 03, OK 08 OK 09;
роцессов	у равнение адиабатного течения. Истечение газов из сопел.		1	ПК 2.1 - ПК 2.4
процессов ечения газов и			1	11K 2.1 - 11K 2.4
ечения газов и кидкостей				
кидкостси	Раздел 2. Основы теплообмена			
Гема2.1.	Общие сведения. Вынужденная и естественная конвекция. Основные уравнения	4		ОК 02 ОК 05;
Сонвективный	конвективного теплообмена. Применение теории пограничного слоя для	·	1	ОК 08 ОК 09;
еплообмен	решения задач конвективного теплообмена.			ПК 2.1 - ПК 2.4
	Тематика практических занятий:	2	2	
	Расчет процесса теплоотдачи при движении жидкости в трубах.		2	
Гема 2.2. Перенос	Общая характеристика процессов теплопроводности. Теплопроводность при	2		OK 02 OK 05;
еплоты	стационарном режиме. Особенности решения практических задач нагрева тел в			ОК 08 ОК 09;
	попроводность различных печах.			ПК 2.1 - ПК 2.4
0	Тематика практических занятий:	2	_	
	Расчет параметров однослойной и многослойной тепловой изоляции.		2	
	1 1 1		l	

1	2	3	4	5
Тема 2.3. Основі	и Основные понятия теории подобия. Применение теории подобия для решения	4		ОК 02 ОК 05;
теории подобия	задач гидродинамики. Применение теории подобия для решения задач		1	ОК 08 ОК 09; ПК 2.1 - ПК 2.4
	конвективного теплообмена. Применение теории подобия для решения задач		1	
	нестационарной теплопроводности. Формы представления уравнений подобия.			
	Тематика практических занятий:	2		
	Решение задач конвективного теплообмена. Решение задач нестационарной		2	
	теплопроводности			
Тема 2.4.	Основные понятия и определения. Количественные характеристики процесса	4		ОК 02 ОК 05;
Теплофизические излучения. Виды лучистых потоков. Основные законы излучения абсолютно			1	OK 08 OK 09;
черного тела. Понятие серого тела и степень черноты серого тела. Закон			1	ПК 2.1 - ПК 2.4
теплообмена	Кирхгофа для излучения серого тела			
излучением	Тематика практических занятий:			
	Применение законов излучения АЧТ для расчетов излучения серых и реальных	2	2	
	тел			
	Тематика самостоятельных занятий:	2	2	
	Изучение истории квантовой оптики		3	
Промежуточная	Промежуточная аттестация в форме дифференцированного зачёта			
Всего		50		

Для характеристики уровня освоения учебного материала используются следующие обозначения:

^{1 –} ознакомительный (воспроизведение информации, узнавание (распознавание), объяснение ранее изученных объектов, свойств и т.п.);

^{2 –} репродуктивный (выполнение деятельности по образцу, инструкции или под руководством);

^{3 –} продуктивный (самостоятельное планирование и выполнение деятельности, решение проблемных задач).

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Для реализации программы учебной дисциплины предусмотрено следующее специальное помещение:

Кабинет «Теплотехники», оснащенный оборудованием и техническими средствами обучения:

- посадочные места по количеству обучающихся -26 шт.
- рабочее место преподавателя;
- методические пособия для проведения практических работ;
- меловая доска;
- проектор;
- ноутбук преподавателя

3.2. Информационное обеспечение реализации программы

3.2.1. Основные источники

1. Ляшков В. И., Теоретические основы теплотехники: Учеб. пособие для вузов / В.И. Ляшков, 2-е изд., испр. и доп. — М.: КУРСК: ИНФА-М, 2015. - 328 с.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

4.1 Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий и лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения	Критерии оценки	Формы и методы
		оценки
Умение рассчитывать теплообменные процессы;	Точность расчета теплообменных процессов	Практическая работа
Умение производить расчеты нагрева и теплообмена в камерах построения установок для аддитивного производства	Точность расчета нагрева и теплообмена в камерах построения установок для аддитивного производства	Практическая работа
Знание основных законов теплообмена и термодинамики	Применение основных законов теплообмена и термодинамики	Тестирование
Знание методов получения, преобразования и использования тепловой энергии	Правильность решения задач по получению, преобразованию и использованию тепловой энергии;	Тестирование
Знание способов переноса теплоты, устройство и принципы действия теплообменных аппаратов, силовых установок и других теплотехнических устройств	Правильный выбор способов переноса теплоты, устройств и принципов действия теплообменных аппаратов, силовых установок и других теплотехнических устройств	Тестирование
Знание тепловых процессов, происходящие в аппаратах и машинах	Точность расчета тепловых процессов, происходящих в аппаратах и машинах	Тестирование
Знание устройств и принципов действия камер построения установок для аддитивного производства;	Качество подготовки камер установок для аддитивного производства	Тестирование
Знание закономерности процессов теплообмена камер построения установок для аддитивного производства	Точность вычислений процессов теплообмена камер построения установок для аддитивного производства	Тестирование

4.2. Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации обучающихся по учебной дисциплине

Показатели и критерии оценивания компетенций отражены в комплекте контрольно оценочных средств. (Приложение 1)

Перечень вопросов, контрольные и тестовые задания, необходимые для оценки знаний, умений, навыков характеризующих формирование компетенций представлены в комплекте контрольно-оценочных средств. (Приложение 1)

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков характеризующих формирование компетенций представлены в методических рекомендация по выполнению практических и лабораторных работ. (Приложение 2)

Методические материалы, определяющие процедуры оценивания самостоятельной работы обучающихся представлены в методических рекомендация по выполнению самостоятельных работ. (Приложение 3)